Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.25.477784

ABSTRACT

Aided by extensive spike protein mutation, the SARS-CoV-2 Omicron variant overtook the previously dominant Delta variant. Spike conformation plays an essential role in SARS-CoV-2 evolution via changes in receptor binding domain (RBD) and neutralizing antibody epitope presentation affecting virus transmissibility and immune evasion. Here, we determine cryo-EM structures of the Omicron and Delta spikes to understand the conformational impacts of mutations in each. The Omicron spike structure revealed an unusually tightly packed RBD organization with long range impacts that were not observed in the Delta spike. Binding and crystallography revealed increased flexibility at the functionally critical fusion peptide site in the Omicron spike. These results reveal a highly evolved Omicron spike architecture with possible impacts on its high levels of immune evasion and transmissibility.

2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.03.462915

ABSTRACT

SUMMARY The COVID-19 pandemic persists as a global health crisis for which curative treatment has been elusive. Development of effective and safe anti-SARS-CoV-2 therapies remains an urgent need. SARS-CoV-2 entry into cells requires specific host proteases including TMPRSS2 and Cathepsin L (Ctsl) 1–3 , but there has been no reported success in inhibiting host proteases for treatment of SARS-CoV-2 pathogenesis in vivo . Here we have developed a lung Ctsl mRNA-targeted, CRISPR/Cas13d-based nanoparticle therapy to curb fatal SARS-CoV-2 infection in a mouse model. We show that this nanotherapy can decrease lung Ctsl expression in normal mice efficiently, specifically, and safely. Importantly, this lung-selective Ctsl -targeted nanotherapy significantly extended the survival of lethally SARS-CoV-2 infected mice by decreasing lung virus burden, reducing expression of pro-inflammatory cytokines/chemokines, and diminishing the severity of pulmonary interstitial inflammation. Additional in vitro analyses demonstrated that Cas13d-mediated Ctsl knockdown inhibited infection mediated by the spike protein of SARS-CoV-1, SARS-CoV-2, and more importantly, the authentic SARS-CoV-2 B.1.617.2 Delta variant, regardless of TMPRSS2 expression status. Our results demonstrate the efficacy and safety of a lung-selective, Ctsl -targeted nanotherapy against infection by SARS-CoV-2 and likely other emerging coronaviruses, forming a basis for investigation of this approach in clinical trials.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.27.441655

ABSTRACT

SARS-CoV in 2003, SARS-CoV-2 in 2019, and SARS-CoV-2 variants of concern (VOC) can cause deadly infections, underlining the importance of developing broadly effective countermeasures against Group 2B Sarbecoviruses, which could be key in the rapid prevention and mitigation of future zoonotic events. Here, we demonstrate the neutralization of SARS-CoV, bat CoVs WIV-1 and RsSHC014, and SARS-CoV-2 variants D614G, B.1.1.7, B.1.429, B1.351 by a receptor-binding domain (RBD)-specific antibody DH1047. Prophylactic and therapeutic treatment with DH1047 demonstrated protection against SARS-CoV, WIV-1, RsSHC014, and SARS-CoV-2 B1.351infection in mice. Binding and structural analysis showed high affinity binding of DH1047 to an epitope that is highly conserved among Sarbecoviruses. We conclude that DH1047 is a broadly neutralizing and protective antibody that can prevent infection and mitigate outbreaks caused by SARS-like strains and SARS-CoV-2 variants. Our results argue that the RBD conserved epitope bound by DH1047 is a rational target for pan Group 2B coronavirus vaccines.


Subject(s)
Severe Acute Respiratory Syndrome , Infections
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.01.407148

ABSTRACT

Sexual dimorphisms in immune responses contribute to coronavirus disease 2019 (COVID-19) outcomes, yet the mechanisms governing this disparity remain incompletely understood. We carried out sex-balanced sampling of peripheral blood mononuclear cells from confirmed COVID-19 inpatients and outpatients, uninfected close contacts, and healthy controls for 36-color flow cytometry and single cell RNA-sequencing. Our results revealed a pronounced reduction of circulating mucosal associated invariant T (MAIT) cells in infected females. Integration of published COVID-19 airway tissue datasets implicate that this reduction represented a major wave of MAIT cell extravasation during early infection in females. Moreover, female MAIT cells possessed an immunologically active gene signature, whereas male counterparts were pro-apoptotic. Collectively, our findings uncover a female-specific protective MAIT profile, potentially shedding light on reduced COVID-19 susceptibility in females.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.01.407007

ABSTRACT

Sex differences in the risk of SARS-CoV-2 infection have been controversial and the underlying mechanisms of COVID-19 sexual dimorphism remain understudied. Here we inspected sex differences in SARS-CoV-2 positivity, hospitalization, admission to the intensive care unit (ICU), sera immune profiling, and two single-cell RNA-sequencing (snRNA-seq) profiles from nasal tissues and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients with varying degrees of disease severity. Our propensity score-matching observations revealed that male individuals have a 29% increased likelihood of SARS-CoV-2 positivity, with a hazard ration (HR) 1.32 (95% confidence interval [CI] 1.18-1.48) for hospitalization and HR 1.51 (95% CI 1.24-1.84) for admission to ICU. Sera from male patients at hospital admission had decreased lymphocyte count and elevated inflammatory markers (C-reactive protein, procalcitonin, and neutrophils). We found that SARS-CoV-2 entry factors, including ACE2, TMPRSS2, FURIN and NRP1, have elevated expression in nasal squamous cells from males with moderate and severe COVID-19. Cell-cell network proximity analysis suggests possible epithelium-immune cell interactions and immune vulnerability underlying a higher mortality in males with COVID-19. Monocyte-elevated expression of Toll like receptor 7 (TLR7) and Bruton tyrosine kinase (BTK) is associated with severe outcomes in males with COVID-19. These findings provide basis for understanding immune responses underlying sex differences, and designing sex-specific targeted treatments and patient care for COVID-19.


Subject(s)
Carcinoma, Squamous Cell , COVID-19
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.05.20226654

ABSTRACT

Highly sensitive, specific, and point-of-care (POC) serological assays are an essential tool to manage the COVID-19 pandemic. Here, we report on a microfluidic, multiplexed POC test that can profile the antibody response against multiple SARS-CoV-2 antigens--Spike S1 (S1), Nucleocapsid (N), and the receptor binding domain (RBD)--simultaneously from a 60 {micro}L drop of blood, plasma, or serum. We assessed the levels of anti-SARS-CoV-2 antibodies in plasma samples from 19 individuals (at multiple time points) with COVID-19 that required admission to the intensive care unit and from 10 healthy individuals. This POC assay shows good concordance with a live virus microneutralization assay, achieved high sensitivity (100%) and specificity (100%), and successfully tracked the longitudinal evolution of the antibody response in infected individuals. We also demonstrated that we can detect a chemokine, IP-10, on the same chip, which may provide prognostic insight into patient outcomes. Because our test requires minimal user intervention and is read by a handheld detector, it can be globally deployed in the fight against COVID-19 by democratizing access to laboratory quality tests.


Subject(s)
COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.30.178897

ABSTRACT

SummaryThe COVID-19 pandemic caused by SARS-CoV-2 has escalated into a global crisis. The spike (S) protein that mediates cell entry and membrane fusion is the current focus of vaccine and therapeutic antibody development efforts. The S protein, like many other viral fusion proteins such as HIV-1 envelope (Env) and influenza hemagglutinin, is glycosylated with both complex and high mannose glycans. Here we demonstrate binding to the SARS-CoV-2 S protein by a category of Fab-dimerized glycan-reactive (FDG) HIV-1-induced broadly neutralizing antibodies (bnAbs). A 3.1 Å resolution cryo-EM structure of the S protein ectodomain bound to glycan-dependent HIV-1 bnAb 2G12 revealed a quaternary glycan epitope on the spike S2 domain involving multiple protomers. These data reveal a new epitope on the SARS-CoV-2 spike that can be targeted for vaccine design.HighlightsFab-dimerized, glycan-reactive (FDG) HIV-1 bnAbs cross-react with SARS-CoV-2 spike.3.1 Å resolution cryo-EM structure reveals quaternary S2 epitope for HIV-1 bnAb 2G12.2G12 targets glycans, at positions 709, 717 and 801, in the SARS-CoV-2 spike.Our studies suggest a common epitope for FDG antibodies centered around glycan 709.Competing Interest StatementThe authors have declared no competing interest.View Full Text


Subject(s)
HIV Infections , Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL